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Abstract

Response of a weakly damped hard Duffing oscillator, which apparently does not admit any homoclinic entanglement, is

analysed. A possibility of homoclinic entanglement is conjectured that may help to understand onset of chaotic behaviour

under simple harmonic excitation.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

A good deal of research effort has been spent in the past three decades to understand different routes to
chaotic response of a harmonically excited Duffing oscillator. The origin of complex behaviour of the soft-
Duffing and so-called Duffing–Holmes oscillator can be explained by homoclinic entanglement using
Melnikov’s criterion [1]. Common in these two kinds of oscillator is the presence of saddle point in phase
curves of free response. In a hard Duffing oscillator, however, such fixed point does not exist, although the
response of the oscillator shows similar trends (period doubling route, quasiperiodic route, etc.) as the other
two. In this paper a conjecture has been proposed to explain the chaotic behaviour of a hard Duffing oscillator
by homoclinic entanglement. The practical difficulty in constructing Melnikov function for this case places an
obstacle against giving a concrete proof.
2. Theoretical analysis

Let us consider the following equation of a weakly damped hard Duffing oscillator:

€xþ xþ ax3 þ b _x ¼ F cosOt ða40; 1bb40Þ. (1)

The steady-state solution of the oscillator is written as

xðtÞ ¼ A cosðOtþ fÞ þ yðtÞ, (2)
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where the time function yðtÞ is the correction term that accommodates all the frequencies including the existing
one. The contribution of this term may be as high as that of the former depending upon relationship between
various parameters, namely, F, a, O and b. It may be seen that the function yðtÞ satisfies the following
equation:

€yþ 1þ
3

2
A2a

� �
þ

3

2
A2a cos 2ðOtþ fÞ

� �
yþ b _yþ 3Aa cosðOtþ fÞy2 þ ay3 ¼ �

a
4

A3 cos 3ðOtþ fÞ, (3)

where A and f are obtained solving

½Að1� O2Þ þ 3
4
aA3�2 þ b2A2O2 ¼ F2

and

tanf ¼ �
bAO

Að1� O2Þ þ 3
4
aA3

.

Eq. (3) can be written in a simplified form

€yþ ðdþ 2� cos 2ðOtþ fÞÞyþ b _yþ 3Aa cosðOtþ fÞy2 þ ay3 ¼ �
a
4

A3 cos 3ðOtþ fÞ, (4)

where d ¼ 1þ 3
2

A2a and � ¼ 3
4

A2a. The above equation is an equation of motion of a viscously damped
nonlinear oscillator subjected to both external harmonic and parametric excitation. It is well known that if the
higher order terms in y (i.e. terms containing y2 and y3) are neglected, the homogeneous part of the solution
yields unbounded values depending upon the relationship between d and �. This instability in yðtÞ manifests
itself as instability of various orders in the response xðtÞ.

The situation is complicated in presence of higher order terms. The unbounded responses of the linear
system become bounded owing to the nonlinear terms. Because an analytical result is, in general, not possible
the nature of approximate solution is studied using method of slowly varying parameters. The general solution
of the equation may be written as

yðtÞ ¼
X1
i¼1

~aiðtÞ cos iðOtþ fÞ þ ~biðtÞ sin iðOtþ fÞ.

In the following an approximate solution is sought neglecting higher order harmonics, and the response is
assumed in the following form:

yðtÞ ¼ aðtÞ cosðOtþ fÞ þ bðtÞ sinðOtþ fÞ. (5)

It may be said that, as a result of approximation, the correct solution will differ from the approximate values
by amount that become larger as the value of A increases.

The time-dependent coefficients aðtÞ and bðtÞ, which vary slowly enough that the second derivatives could be
neglected, are solved from the following first-order differential equations:

b _aþ 2O _bþ ðd� O2 þ �Þaþ bObþ 3
4
aaða2 þ b2

Þ þ 9
4

Aaa2 þ 3
4

Aab2
¼ 0 (6)

and

�2O _aþ b _bþ ðd� O2 � �Þb� bOaþ 3
4
abða2 þ b2

Þ þ 3
2

Aaab ¼ 0. (7)

The fixed points of aðtÞ and bðtÞ are the solutions of the algebraic equations

ðd� O2 þ �Þaþ bObþ 3
4
aaða2 þ b2

Þ þ 9
4

Aaa2 þ 3
4

Aab2
¼ 0 (8)

and

ðd� O2 � �Þb� bOaþ 3
4
abða2 þ b2

Þ þ 3
2

Aaab ¼ 0. (9)
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Fig. 1. Stability zones in parametric plane, I: stable focus, II: saddle point, and III: stable focus. The value of a ¼ 1.

G. Chakraborty / Journal of Sound and Vibration 294 (2006) 435–440 437
It is clearly seen that a ¼ 0 and b ¼ 0 is always a fixed point. The linearized equations around this fixed point
become

b 2O

�2O b

" #
_a
_b

� �
þ

d� O2 þ � bO

�bO d� O2 � �

" #
a

b

� �
¼ 0.

A simple eigenvalue analysis shows that the fixed point is a saddle point if

ðd� O2Þ
2
� �2 þ b2O2o0.

For undamped oscillator the above condition yields

d� �oO2odþ �,

or

1þ 3
4

A2aoO2o1þ 9
4

A2a.

If these curves are drawn on the response plane (i.e., A–O plane) of an undamped hard Duffing oscillator they
become the backbone curve and the curve joining the points of vertical tangencies, respectively. In presence of
small damping the instability region is bounded by two curves joining the points of vertical tangencies [2]. Outside
these curves the trivial fixed point is a stable focus as the eigenvalue analysis will clearly reveal. The results are
schematically shown in Fig. 1 where the instability regions are shown in the A–O plane. The curves in the figure
are the curves of vertical tangencies. In the following the stability of the non-trivial fixed points is studied in detail.

2.1. Analysis of non-trivial fixed points

Expressing the non-trivial fixed points as

a ¼ r cos y and b ¼ r sin y,

the algebraic equations (8) and (9) after minor manipulation take the following forms:

ðd� O2Þ þ � cos 2yþ 3
4
ar2 þ 9

4
Aar cos y ¼ 0 (10)

and

� sin 2yþ bOþ 3
4

Aar sin y ¼ 0, (11)

which are to be solved. The closed-form solution is not possible. Hence the equations should be solved
numerically. However, an approximate solution can be obtained in a series form for small damping b ¼ g ~b,
with g as a small parameter (i.e. g51). Using a regular perturbation one can write up to OðgÞ:

r ¼ r0 þ gr1 and y ¼ y0 þ gy1,
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where ðr0; y0Þ and ðr1; y1Þ satisfy the following equations obtained after equating the coefficients of the like
powers of g:

g0: ðd� O2Þ þ � cos 2y0 þ 3
4
ar20 þ

9
4

Aar0 cos y0 ¼ 0, (12)

� sin 2y0 þ 3
4

Aar0 sin y0 ¼ 0 (13)

and

g1: �4�y1 sin 2y0 þ 3
2
ar0r1 þ

9
4

Aar1 cos y0 � 9
4

Aar0y1 sin y0 ¼ 0, (14)

4�y1 cos 2y0 þ ~bOþ 3
4

Aar1 sin y0 þ 3
4

Aar0y1 cos y0 ¼ 0. (15)

From Eq. (13) one gets either sin y0 ¼ 0 or 2� cos y0 þ 3
4

Aar0 ¼ 0.
Case I: sin y0 ¼ 0 or cos y ¼ �1.
(a) cos y0 ¼ 1 yields

r0 ¼ �
3
2

A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9
4
AaÞ2 � 3ðd� O2 þ �Þa

q
=ð3

2
aÞ,

which has either one positive root or no positive root according as d� O2 þ �o0 or d� O2 þ �40,
respectively, or in terms of A and O, as O241þ 9

4
aA2 or O2o1þ 9

4
aA2, respectively.

(b) cos y0 ¼ �1 yields

r0 ¼
3
2A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð94AaÞ2 � 3ðd� O2 þ �Þa

q
=ð32aÞ,

which has one positive root if d� O2 þ �o0, i.e., O241þ 9
4
aA2 and two positive roots if d� O2 þ �40, i.e.,

O2o1þ 9
4 aA2 and ð94 AaÞ2 � 3ðd� O2 þ �Þa40 or in terms of A and O,O241þ 9

16 aA2.
Case II: cos y0 ¼ � 3

8�Aar0.
It can be verified easily by direct substitution into Eq. (12) that this case does not yield any equation in r0

but merely a relation between various parameters, namely d� O2 � � ¼ 0.
To summarize, one can have two positive roots for O241þ 9

4
aA2, one with cos y0 ¼ 1 and another with

cos y0 ¼ �1. If O2o1þ 9
4
aA2, one can have either no real root or two positive roots depending upon whether

O2o1þ 9
16
aA2 or O241þ 9

16
aA2, respectively. For the latter case, cos y0 ¼ �1 for both the roots.

Next, the values of r1 and y1 are expressed in terms of r0 and y0 as

r1 ¼ �
~bO

3
4 Aa sin y0 þ Kð32 ar0 þ

9
4 Aa cos y0Þ

,

y1 ¼
3
2
ar0 þ

9
4

Aa cos y0
4� sin 2y0 þ 9

4
Aar0 sin y0

" #
r1,

where

K ¼
4� cos 2y0 þ 3

4
Aar0 cos y0

4� sin 2y0 þ 3
4

Aar0 sin y0

if sin y0a0. However, for the given situation (sin y0 ¼ 0), it can be readily seen that r1 ¼ 0,
y1 ¼ � ~bO=ð4�þ 3

4
Aar0 cos y0Þ.

2.2. Stability analysis of nonlinear fixed points

The stability of any fixed point (a; b) is ascertained after linearizing Eqs. (6) and (7) around the fixed points.
The linearized equations become

A _xþ Bx ¼ 0,
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where

A ¼
b 2O

�2O b

" #
; B ¼

b11 b12

b21 b22

" #
; x ¼

x

Z

( )

and

b11 ¼ ðd� O2 þ �Þ þ 9
4
aa2 þ 3

4
ab

2
þ 9

2
aAa,

b12 ¼
3
2
aabþ 3

2
aAbþ ~bO,

b21 ¼
3
2
aabþ 3

2
aAb� ~bO,

b22 ¼ ðd� O2 � �Þ þ 9
4
ab

2
þ 3

4
aa2 þ 3

2
aAa.

In the above expressions a ¼ r cos y and b ¼ r sin y. The characteristic equation is obtained after substituting
x ¼ Xe�lt in the linearized equation and becomes

Det B� lA½ � ¼ 0,

or in expanded form

l2ð ~b
2
þ 4O2Þ þ lð� ~bb11 �

~bb22 � 2Ob12 þ 2Ob21Þ þ ðb11b22 � b12b21Þ ¼ 0. (16)

The fixed point (a; b) is stable or unstable if the real part of the root of the above characteristic equation is

positive or negative, respectively. For ~b ¼ 0, it may be easily verified that when cos y0 ¼ �1, the fixed point is

a saddle point if ðr0 �
3
2

AÞð2A� r0Þ40. This condition is satisfied for the fixed point r0 ¼
3
2

Aþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9
4

AaÞ2 � 3ðd� O2 þ �Þa
q

=ð3
2
aÞ only if O2o1þ 3

4
aA2. When cos y0 ¼ 1, the fixed point r0 ¼ �

3
2

Aþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9
4

AaÞ2 � 3ðd� O2 þ �Þa
q

=ð3
2
aÞ is always a saddle point because the condition becomes then

ðr0 þ
3
2

AÞð2Aþ r0Þ40, which is always true. The stability of the other fixed points (which are non-hyperbolic

in nature for an undamped system) cannot be determined without introducing a small damping. It may be
mentioned, however, that in presence of damping the nature of the saddle points does not change.

It may be noticed form the above analysis that for a small damping, b ¼ OðgÞ and therefore the terms b12

and b21 are both of order OðgÞ. Neglecting, as before, terms containing higher orders of g, the roots of the
characteristic polynomial become

l ¼ ~bðb11 þ b22 þ 4O2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�16O2b11b22

q� ��
8O2.

It is obvious that the fixed points are stable or unstable foci if b11b2240 and b11 þ b22 þ 4O2 is positive or
negative, respectively. The latter condition is equivalent to ðr=AÞ2 þ 2ðr=AÞ cos yþ 1þ ð2O2=3A2aÞ being
positive or negative, respectively. With very little effort it can be proved that this always holds good. In fact,
the expression may be rewritten as ððr=AÞ þ cos yÞ2 þ ð1� cos2 yÞ þ ð2O2=3A2aÞ, which proves the statement.
Therefore, the other fixed points are stable foci.

The summary of the entire analysis is presented in Fig. 2. In A–O plane, within region I, bounded by curved
O2 ¼ 1þ 9

16
A2a and 1þ 3

4
A2a and in region III where O241þ 9

4
A2a there exist two stable foci (including

a ¼ 0 and b ¼ 0) and a saddle point. Also in region II, lying between O2 ¼ 1þ 3
4

A2a and 1þ 9
4

A2a, there
are two stable foci and one saddle point, the difference being that in the latter case, a ¼ 0 and b ¼ 0 is a
saddle point.

Turning attention, once again, to Eq. (5), one finds that yðtÞ reaches a stable limit cycle whose amplitude is
given by the fixed points of a and b. If a stroboscopic map is drawn for yðtÞ with time frame T ¼ 2p=O, the
points should follow the phase curves of the dynamic system given by Eqs. (6) and (7), if only the first
harmonic is considered. In Eq. (4), the right-hand side which may be roughly called the forcing term, has
higher frequency. Therefore the phase curves, mentioned above, get distorted as A is increased which can
happen for proper combinations of F and O. For some values of A the possibility of a homoclinic
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Fig. 2. Nature of fixed points of a and b in A–O plane, I, III: two stable foci (including a ¼ 0; b ¼ 0) and a saddle point, II: two stable foci

and one saddle (a ¼ 0, b ¼ 0). The value of a ¼ 1.

G. Chakraborty / Journal of Sound and Vibration 294 (2006) 435–440440
entanglement leading to chaotic response cannot be ruled out. Construction of Melnikov function, which is a
measure of proximity of homoclinic entanglement, is a very difficult task and has not been attempted for this
problem. Note that as a and b behave chaotically so does the overall response of yðtÞ and hence xðtÞ. But at O
a sharp peak is expected in the frequency spectra of response in chaotic regime. That, such a peak exists is
well known in literature.

It should be mentioned that only first-order instability of the nonlinear parametrically excited system
(Eq. (4)) is considered in this paper. Instability of the higher orders may show similar complexities.

3. Conclusion

Response of a weakly damped hard Duffing oscillator is conventionally derived by various techniques [3–5]
whereby approximate results are obtained neglecting some terms. It is shown here that this exclusion does not
always give correct pictures of the responses. In this paper, the effects of the terms neglected in harmonic
balance method are studied. It has been shown that the dynamics is complicated and, if carefully studied, may
give some insight into onset of chaotic oscillation in such a system. Although, the equation of motion of a hard
Duffing oscillator does not immediately show any possibility of homoclinic entanglement this is possible
according to the analysis presented here. The analysis, however, remains only at the level of conjecture because
the associated Melnikov function has not been constructed.
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